# Sampling Processes in Experience Based Decision Making Stephen B. Broomell

# Introduction

I investigate the sampling behavior in experience based decision making in order to gain insight into the strategies DMs use to understand experienced gambles.

# **Research Goals**

Test the effect of two manipulations predicted to impact sampling processes

- **Initial Information State (IIS)** One group of DMs is informed about the number of possible outcomes from a gamble (1, 2, or 3) and the other group is not
- **Motivating Incentives (MI)** One group is paid according to a one-shot post sampling play and the other group is paid based on the accuracy of the estimates of the probabilities that define the gambles

## Methods

- Participants included 153 volunteers (mean age = 21; 67% female) who responded to an advert for a paid DM experiment
- DMs were randomly assigned to groups
- Each DM was exposed to 10 gamble pairs
  - Gambles were either blank, or labeled with the number of outcomes
- After experiencing the gambles DMs either:
- Chose the preferred gamble to play
- Estimated the probability of outcomes before choosing the preferred gamble to play

College of Information Sciences and Technology Pennsylvania State University, University Park, PA 16802

## **Experimental Stimuli**

Blank Experience Interface

First experience the two options, then click the button below.

| Experience Center       |                                        |                |  |  |  |
|-------------------------|----------------------------------------|----------------|--|--|--|
| Brown Prospect          |                                        | Green Prospect |  |  |  |
| Experience:<br>0 points |                                        | Experience:    |  |  |  |
| Select Brown •          | $\leftarrow \text{Choose} \rightarrow$ | Select Green • |  |  |  |
|                         |                                        |                |  |  |  |

Experience the Selected Prospect

| Gamble Pairs |                  |           |       |       |  |
|--------------|------------------|-----------|-------|-------|--|
| Pair         | Gamble A         | Gamble B  | EV(A) | EV(B) |  |
| 1            | (4, 0.8)         | (3, 1)    | 3.20  | 3.00  |  |
| 2            | (4, 0.2)         | (3, 0.25) | 0.80  | 0.75  |  |
| 3            | (32, 0.1)        | (3, 1)    | 3.20  | 3.00  |  |
| 4            | (32, 0.025)      | (3, 0.25) | 0.80  | 0.75  |  |
| 5            | (6, 0.4; 2, 0.4) | (3, 1)    | 3.20  | 3.00  |  |
| 6            | (6, 0.1; 2, 0.1) | (3, 0.25) | 0.80  | 0.75  |  |
| 7            | (4, 0.6)         | (3, 0.75) | 2.40  | 2.25  |  |
| 8            | (4, 0.4)         | (3, 0.5)  | 1.60  | 1.50  |  |
| 9            | (4, 0.8)         | (6, 0.5)  | 3.20  | 3.00  |  |
| 10           | (6, 0.5)         | (4, 0.6)  | 3.00  | 2.40  |  |

#### Results

- All variables tested by 3-way repeated measures MANOVA 10 gamble pairs (within Ss)  $\times$  2 information states (between Ss)  $\times$  2 motivating incentives (between Ss)
- Dependent Variables: Properties of Experience\*
- Total experience size (MI)
- The tendency to switch between gambles (IIS) 2.
- The distribution of these switches (MI)
- The average run length (MI) 4.
- The run length variance
- Statistical accuracy of probability estimation (MI)
- (MI) = Motivating incentive factor is significant (**IIS**) = Initial information state factor is significant \*Gamble pair factor is significant for all dependent variables.



- **Initial Information State** Weak impact on experienced samples
- 2. Motivating Incentives Stronger impact on experienced samples

Probability estimation promotes samples with:

- 1. More experience samples
- More accurate estimation
- Fewer random searches

4. Longer runs of repeated experiences

#### Discussion

- Experiences incentivized by probability estimation differ from experiences incentivized by a one-shot play
- DMs do not appear to focus on probability estimation unless specifically motivated to do so

#### Acknowledgements

• This work was supported by a dissertation grant from the Society of Multivariate Experimental Psychology, the National Science Foundation (under Grant No. 0345925), and the National Geospatial-Intelligence Agency (under Grant No. HM1582-09-1-0020).



